3.1081 \(\int \frac{\cos (c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=92 \[ -\frac{2 b \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a^2 d \sqrt{a^2-b^2}}-\frac{\tanh ^{-1}(\cos (c+d x))}{a^2 d}+\frac{\cos (c+d x)}{a d (a+b \sin (c+d x))} \]

[Out]

(-2*b*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^2*Sqrt[a^2 - b^2]*d) - ArcTanh[Cos[c + d*x]]/(a^2*d
) + Cos[c + d*x]/(a*d*(a + b*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.242228, antiderivative size = 92, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {2889, 3056, 12, 2747, 3770, 2660, 618, 204} \[ -\frac{2 b \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a^2 d \sqrt{a^2-b^2}}-\frac{\tanh ^{-1}(\cos (c+d x))}{a^2 d}+\frac{\cos (c+d x)}{a d (a+b \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*Cot[c + d*x])/(a + b*Sin[c + d*x])^2,x]

[Out]

(-2*b*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^2*Sqrt[a^2 - b^2]*d) - ArcTanh[Cos[c + d*x]]/(a^2*d
) + Cos[c + d*x]/(a*d*(a + b*Sin[c + d*x]))

Rule 2889

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f,
 m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n])

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2747

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[b/(
b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^2} \, dx &=\int \frac{\csc (c+d x) \left (1-\sin ^2(c+d x)\right )}{(a+b \sin (c+d x))^2} \, dx\\ &=\frac{\cos (c+d x)}{a d (a+b \sin (c+d x))}+\frac{\int \frac{\left (a^2-b^2\right ) \csc (c+d x)}{a+b \sin (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac{\cos (c+d x)}{a d (a+b \sin (c+d x))}+\frac{\int \frac{\csc (c+d x)}{a+b \sin (c+d x)} \, dx}{a}\\ &=\frac{\cos (c+d x)}{a d (a+b \sin (c+d x))}+\frac{\int \csc (c+d x) \, dx}{a^2}-\frac{b \int \frac{1}{a+b \sin (c+d x)} \, dx}{a^2}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{a^2 d}+\frac{\cos (c+d x)}{a d (a+b \sin (c+d x))}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^2 d}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{a^2 d}+\frac{\cos (c+d x)}{a d (a+b \sin (c+d x))}+\frac{(4 b) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^2 d}\\ &=-\frac{2 b \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{a^2 \sqrt{a^2-b^2} d}-\frac{\tanh ^{-1}(\cos (c+d x))}{a^2 d}+\frac{\cos (c+d x)}{a d (a+b \sin (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.211391, size = 97, normalized size = 1.05 \[ \frac{-\frac{2 b \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2}}+\frac{a \cos (c+d x)}{a+b \sin (c+d x)}+\log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*Cot[c + d*x])/(a + b*Sin[c + d*x])^2,x]

[Out]

((-2*b*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] - Log[Cos[(c + d*x)/2]] + Log[Sin[(c
+ d*x)/2]] + (a*Cos[c + d*x])/(a + b*Sin[c + d*x]))/(a^2*d)

________________________________________________________________________________________

Maple [A]  time = 0.141, size = 153, normalized size = 1.7 \begin{align*} 2\,{\frac{\tan \left ( 1/2\,dx+c/2 \right ) b}{d{a}^{2} \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}+2\,{\frac{1}{da \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}-2\,{\frac{b}{d{a}^{2}\sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }+{\frac{1}{d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)/(a+b*sin(d*x+c))^2,x)

[Out]

2/d/a^2/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*tan(1/2*d*x+1/2*c)*b+2/d/a/(tan(1/2*d*x+1/2*c)^2*a+2
*tan(1/2*d*x+1/2*c)*b+a)-2/d/a^2*b/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))+1/
d/a^2*ln(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.02589, size = 1111, normalized size = 12.08 \begin{align*} \left [-\frac{{\left (b^{2} \sin \left (d x + c\right ) + a b\right )} \sqrt{-a^{2} + b^{2}} \log \left (-\frac{{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} - 2 \,{\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) - 2 \,{\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right ) +{\left (a^{3} - a b^{2} +{\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) -{\left (a^{3} - a b^{2} +{\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right )}{2 \,{\left ({\left (a^{4} b - a^{2} b^{3}\right )} d \sin \left (d x + c\right ) +{\left (a^{5} - a^{3} b^{2}\right )} d\right )}}, \frac{2 \,{\left (b^{2} \sin \left (d x + c\right ) + a b\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \sin \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) + 2 \,{\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right ) -{\left (a^{3} - a b^{2} +{\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) +{\left (a^{3} - a b^{2} +{\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right )}{2 \,{\left ({\left (a^{4} b - a^{2} b^{3}\right )} d \sin \left (d x + c\right ) +{\left (a^{5} - a^{3} b^{2}\right )} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/2*((b^2*sin(d*x + c) + a*b)*sqrt(-a^2 + b^2)*log(-((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2
 - b^2 - 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*
x + c) - a^2 - b^2)) - 2*(a^3 - a*b^2)*cos(d*x + c) + (a^3 - a*b^2 + (a^2*b - b^3)*sin(d*x + c))*log(1/2*cos(d
*x + c) + 1/2) - (a^3 - a*b^2 + (a^2*b - b^3)*sin(d*x + c))*log(-1/2*cos(d*x + c) + 1/2))/((a^4*b - a^2*b^3)*d
*sin(d*x + c) + (a^5 - a^3*b^2)*d), 1/2*(2*(b^2*sin(d*x + c) + a*b)*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) +
b)/(sqrt(a^2 - b^2)*cos(d*x + c))) + 2*(a^3 - a*b^2)*cos(d*x + c) - (a^3 - a*b^2 + (a^2*b - b^3)*sin(d*x + c))
*log(1/2*cos(d*x + c) + 1/2) + (a^3 - a*b^2 + (a^2*b - b^3)*sin(d*x + c))*log(-1/2*cos(d*x + c) + 1/2))/((a^4*
b - a^2*b^3)*d*sin(d*x + c) + (a^5 - a^3*b^2)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos ^{2}{\left (c + d x \right )} \csc{\left (c + d x \right )}}{\left (a + b \sin{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)/(a+b*sin(d*x+c))**2,x)

[Out]

Integral(cos(c + d*x)**2*csc(c + d*x)/(a + b*sin(c + d*x))**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.22913, size = 176, normalized size = 1.91 \begin{align*} -\frac{\frac{2 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )} b}{\sqrt{a^{2} - b^{2}} a^{2}} - \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a^{2}} - \frac{2 \,{\left (b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a\right )}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a\right )} a^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-(2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))*b/(sqrt(a
^2 - b^2)*a^2) - log(abs(tan(1/2*d*x + 1/2*c)))/a^2 - 2*(b*tan(1/2*d*x + 1/2*c) + a)/((a*tan(1/2*d*x + 1/2*c)^
2 + 2*b*tan(1/2*d*x + 1/2*c) + a)*a^2))/d